Sufficient conditions for isomorphisms between function algebras, Thomas Tonev, The University of Montana, Missoula

Let $T: A \to B$ be a surjective (not necessarily linear) map between two function algebras on locally compact Hausdorff spaces X and Y with Choquet boundaries $\delta A \subset X$ and $\delta B \subset Y$. If ||TfTg|| = ||fg|| for all $f, g \in A$, then there is a homeomorphism $\psi: \delta B \to \delta A$ so that $|(Tf)(y)| = |f(\psi(y))|$ for all $y \in \delta B$ and $f \in A$. If, more generally, $\sigma_{\pi}(TfTg) \subset \sigma_{\pi}(fg)$ for all $f, g \in A$ (where $\sigma_{\pi}(f)$ is the peripheral spectrum of f), we show that $(Tf)(y) = \alpha(y) f(\psi(y))$ for some $\alpha \in C(\delta B)$ with $\alpha^2 = 1$, i.e. T is a weighted composition operator on δB . This is true also if $\sigma_{\pi}(TfTg) \cap \sigma_{\pi}(fg) \neq \emptyset$ for all $f, g \in A$ and T preserves singleton peripheral spectra of algebra elements. In the case of metric spaces X the condition $\sigma_{\pi}(TfTg) \cap \sigma_{\pi}(fg) \neq \emptyset$ alone suffices for T to be a weighted composition operator. If, in addition $dist(\sigma_{\pi}(Tf), \sigma_{\pi}(f)) < 2$ for all $f \in A$, then in all cases $\alpha = 1$, i.e. $(Tf)(y) = f(\psi(y))$, therefore, T is a composition operator, and consequently, an isometric algebra isomorphism. (Jointly with J. Johnson, PhD student)

More generally, if ||TfTg|| = ||fg|| and there is an $0 \le \varepsilon < 2/3$, so that $\sigma_{\pi}(TfTg)$ is contained in an $(\varepsilon ||fg||)$ -neighborhood of $\sigma_{\pi}(fg)$ for all $f \in A$ and all $g \in A$ with ||g|| = 1, then there is an $\alpha \in C(\delta B)$ with $\alpha^2 = 1$ and a homeomorphism $\psi \colon \delta B \to \delta A$ so that $|(Tf)(y) - \alpha(y) f(\psi(y))| \le 2\varepsilon |f(\psi(y))|$ for each $f \in A$ and every $y \in \delta B$, i.e. T is an almost weighted composition operator on δB . Moreover, if there are $0 \le \varepsilon < 1$, $0 \le \eta < 1$, so that $dist(\sigma_{\pi}(TfTg), \sigma_{\pi}(fg)) \le \varepsilon ||fg||$ and $\sigma_{\pi}(Tf)$ is contained in an η -neighborhood of $\sigma_{\pi}(f)$ for all $f \in A$ and all $g \in A$ with ||g|| = 1, then $|(Tf)(y) - f(\psi(y))| \le (\varepsilon + \eta) |f(\psi(y))|$ for each $y \in \delta B$ and every $f \in A$, i.e. T is an almost algebraic isomorphism. (To appear in the PAMS)